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Introduction


Permutational Invariant Quantum Solver (PIQS)

PIQS is an open-source Python solver to study the exact Lindbladian dynamics of open quantum systems consisting of identical qubits.

In the case where local processes are included in the model of a system’s dynamics, numerical simulation requires dealing with density matrices of size \(2^N\). This becomes infeasible for a large number of qubits. We can simplify the calculations by exploiting the permutational invariance of indistinguishable quantum particles which allows the user to study hundreds of qubits.




Integrated with QuTiP

A major feature of PIQS is that it allows to build the Liouvillian of the system in an optimal way. It uses Cython to optimize performance and by taking full advangtage of the sparsity of the matrix it can deal with large systems. Since it is compatible with the quantum object class of [QuTiP] one can take full advantage of existing features of this excellent open-source library.




A wide range of applications


	The time evolution of the total density matrix of quantum optics and cavity QED systems for permutationally symmetric initial states (such as the GHZ state, Dicke states, coherent spin states).


	Quantum phase transitions (QPT) of driven-dissipative out-of-equilibrium quantum systems.


	Correlation functions of collective systems in quantum optics experiments, such as the spectral density and second-order correlation functions.


	Various quantum optics phenomena such as steady-state superradiance, superradiant light emission, superradiant phase transition, spin squeezing, boundary time crystals, resonance fluorescence.










          

      

      

    

  

    
      
          
            
  
Installation

In the terminal enter the following commands (you just need git and python installed). If you do not have git installed, just download the folder from Github and run the setup.py file with python. Please install cython, numpy, scipy and qutip as piqs depends on these packages.

We will soon publish the code in the Python Packaging Index (pip) and also make a conda package for easy installation on Windows. If you have any problems installing the tool, please open an issue or write to us.

git clone https://github.com/nathanshammah/piqs.git
cd piqs
python setup.py install









          

      

      

    

  

    
      
          
            
  
User Guide

The Permutational Invariant Quantum Solver (PIQS) is an open-source Python solver to study the exact Lindbladian dynamics of open quantum systems consisting of identical qubits. It is integrated in QuTiP and can be imported as as a model.

Using this library, the Liouvillian of an ensemble of \(N\) qubits, or two-level systems
(TLSs), \(\mathcal{D}_{TLS}(\rho)\), can be built using only polynomial – instead of exponential – resources. This has many applications for the study of realistic quantum optics models of many TLSs and in general as a tool in cavity QED [1].

Consider a system evolving according to the equation


\[ \begin{align}\begin{aligned}\dot{\rho} = \mathcal{D}_\text{TLS}(\rho)=-\frac{i}{\hbar}\lbrack H,\rho \rbrack
+\frac{\gamma_\text{CE}}{2}\mathcal{L}_{J_{-}}[\rho]
+\frac{\gamma_\text{CD}}{2}\mathcal{L}_{J_{z}}[\rho]
+\frac{\gamma_\text{CP}}{2}\mathcal{L}_{J_{+}}[\rho]\\+\sum_{n=1}^{N}\left(
\frac{\gamma_\text{E}}{2}\mathcal{L}_{J_{-,n}}[\rho]
+\frac{\gamma_\text{D}}{2}\mathcal{L}_{J_{z,n}}[\rho]
+\frac{\gamma_\text{P}}{2}\mathcal{L}_{J_{+,n}}[\rho]\right)\end{aligned}\end{align} \]

where \(J_{\alpha,n}=\frac{1}{2}\sigma_{\alpha,n}\) are SU(2) Pauli spin operators, with \({\alpha=x,y,z}\) and \(J_{\pm,n}=\sigma_{\pm,n}\). The collective spin operators are \(J_{\alpha} = \sum_{n}J_{\alpha,n}\) . The Lindblad super-operators are \(\mathcal{L}_{A} = 2A\rho A^\dagger - A^\dagger A \rho - \rho A^\dagger A\).

The inclusion of local processes in the dynamics lead to using a Liouvillian space of dimension \(4^N\). By exploiting the permutational invariance of identical particles [2-8], the Liouvillian \(\mathcal{D}_\text{TLS}(\rho)\) can be built as a block-diagonal matrix in the basis of Dicke states \(|j, m \rangle\).

The system under study is defined by creating an object of the
Dicke class, e.g. simply named
system, whose first attribute is


	system.N, the number of TLSs of the system \(N\).




The rates for collective and local processes are simply defined as


	collective_emission defines \(\gamma_\text{CE}\), collective (superradiant) emission


	collective_dephasing defines \(\gamma_\text{CD}\), collective dephasing


	collective_pumping defines \(\gamma_\text{CP}\), collective pumping.


	emission defines \(\gamma_\text{E}\), incoherent emission (losses)


	dephasing defines \(\gamma_\text{D}\), local dephasing


	pumping  defines \(\gamma_\text{P}\), incoherent pumping.




Then the system.lindbladian() creates the total TLS Linbladian superoperator matrix. Similarly, system.hamiltonian defines the TLS hamiltonian of the system \(H_\text{TLS}\).

The system’s Liouvillian can be built using system.liouvillian(). The properties of a Piqs object can be visualized by simply calling
system. We give two basic examples on the use of PIQS. In the first example the incoherent emission of N driven TLSs is considered.

from piqs import Dicke
from qutip import steadystate
N = 10
system = Dicke(N, emission = 1, pumping = 2)
L = system.liouvillian()
steady = steadystate(L)







	Superradiant Light Emission

	Superradiance: Qubits in a cavity

	Spin squeezing






PIQS functions






	Operators

	Command

	Description





	Collective spin Jx

	jspin(N, "x")

	The collective spin operator Jx. Requires N number of TLS



	Collective spin J+

	jspin(N, "+")

	The collective spin operator J+.



	Collective spin J-

	jspin(N, "-")

	The collective spin operator Jz.



	Collective spin Jx in uncoupled basis

	jspin(N, "z", basis='uncoupled')

	The collective spin operator Jz in the uncoupled basis



	Dicke state |j, m>

	dicke(N, j, m)

	A Dicke state given by |j, m>



	Excited state in uncoupled basis

	excited(N, basis="uncoupled")

	The excited state in the uncoupled basis



	GHZ state in the Dicke basis

	ghz(N)

	The GHZ state in the Dicke (default) basis for N number of TLS



	Collapse operators of the ensemble

	Dicke.c_ops()

	The collapse operators for the ensemble can be called by the c_ops method of the dicke class.










          

      

      

    

  

    
      
          
            
  
Superradiant Light Emission

We consider a system of \(N\) two-level systems (TLSs) with identical frequency \(\omega_{0}\), which can emit collectively at a rate \(\gamma_\text{CE}\), and suffer from dephasing and local losses at rates \(\gamma_\text{D}\) and \(\gamma_\text{E}\), respectively. The dynamics can be written as



\[\dot{\rho} =-i\lbrack \omega_{0}J_z,\rho \rbrack
+\frac{\gamma_\text {CE}}{2}\mathcal{L}_{J_{-}}[\rho]
+\sum_{n=1}^{N}\frac{\gamma_\text{D}}{2}\mathcal{L}_{J_{z,n}}[\rho]
+\frac{\gamma_\text{E}}{2}\mathcal{L}_{J_{-,n}}[\rho].\]




When \(\gamma_\text{E}=\gamma_\text{D}=0\) this dynamics is the classical superradiant master equation.
In this limit, a system initially prepared in the fully-excited state undergoes superradiant light emission whose peak intensity scales proportionally to \(N^2\).

from qutip import *
from piqs import *
import matplotlib.pyplot as plt

N = 20
[jx, jy, jz] = jspin(N)
jp = jspin(N, "+")
jm = jp.dag()

# spin hamiltonian
w0 = 1
H = w0 * jz

# dissipation
gCE, gD, gE = 1, 1, 0

# set initial conditions for spins
system = Dicke(N=N, hamiltonian=h, dephasing=gD,
               collective_emission=gCE)

# build the Liouvillian matrix
liouv = system.liouvillian()





Now that the system Liouvillian is defined, we can use QuTiP to solve the dynamics.
We use as integration time a multiple of the superradiant delay time, \(t_\text{D}=\log(N)/(N \gamma_\text{CE})\). We specify the operators for which
the expectation values should be calculated to mesolve with the keyword
argument e_ops. In this case, we are interested in \(J_x, J_+ J_-, J_z^2\).

nt = 1001
td0 = np.log(N)/(N*gCE)
tmax = 10 * td0

t = np.linspace(0, tmax, nt)

# initial state
excited_rho = excited(N)

# alternative states
superradiant_rho = dicke(N, N/2, 0)
subradiant_rho = dicke(N, 0, 0)
css_symmetric = css(N)

a = 1/np.sqrt(2)
css_antisymmetric = css(N, a, -a)
ghz_rho = ghz(N)
rho0 = excited_rho
result = mesolve(liouv, rho0, t, [], e_ops = [jz, jp*jm, jz**2],
                 options = Options(store_states=True))
rhot = result.states





We can then plot the results of the time evolution of the expectation values of the collective spin operators for different initial states.

jz_t = result.expect[0]
jpjm_t = result.expect[1]
jz2_t = result.expect[2]

jmax = (0.5 * N)
fig1 = plt.figure()
plt.plot(t/td0, jz_t/jmax)
plt.show()
plt.close()






[image: ../_images/srle.png]
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Superradiance: Qubits in a cavity

We consider a system of \(N\) two-level systems (TLSs) coupled to a cavity mode. This is known as the Dicke model


\[H = \omega_{0}J_z +  \omega_{c}a^\dagger a + g\left(a^\dagger + a\right)\left(J_{+} + J_{-}\right)\]

where each TLS has identical frequency \(\omega_0\). The light matter coupling can be in the ultrastrong coupling (USC) regime, \(g/ \omega_0 >0.1\).

If we study this model as an open quantum system, the cavity can leak photons and the TLSs are subject to local processes. For example the system can be incoherently pumped at a rate \(\gamma_\text{P}\), the TLSs are subject to dephaisng at a rate \(\gamma_\text{D}\), and local incoherent emission occurs at a rate \(\gamma_\text{E}\). The dynamics of the coupled light-matter system is governed by


\[ \begin{align}\begin{aligned}\dot{\rho} = -i\lbrack \omega_{0}J_z +  \omega_{a}a^\dagger a + g\left(a^\dagger + a\right)\left(J_{+} + J_{-}\right),\rho \rbrack\\+\frac{\kappa}{2}\mathcal{L}_{a}[\rho]
+\sum_{n=1}^{N}\left(\frac{\gamma_\text{P}}{2}\mathcal{L}_{J_{+,n}}[\rho]
+\frac{\gamma_\text{E}}{2}\mathcal{L}_{J_{+,n}}[\rho]
+\frac{\gamma_\text{D}}{2}\mathcal{L}_{J_{+,n}}[\rho]\right)
\ \ \ \ \ \ (1)\end{aligned}\end{align} \]

import matplotlib.pyplot as plt
from qutip import *
from piqs import *

#TLS parameters
N = 6
nds = num_dicke_states(N)
[jx, jy, jz] = jspin(N)
jp, jm = jspin(N, "+"), jspin(N, "-")
w0 = 1
gE, gD = 0.1, 0.01

# Hamiltonian
h = w0 * jz

#photonic parameters
nphot = 20
wc = 1
kappa = 1
ratio_g = 2
g = ratio_g/np.sqrt(N)
a = destroy(nphot)





After defining all the parameters, we can build a Liouvillian for the TLS ensemble and the photonic cavity. In order to study this system using QuTiP and \(PIQS\), we will first build the TLS Liouvillian, then we will build the photonic Liouvillian and finally we will build the light-matter interaction. The total dynamics of the system is thus defined in a Liouvillian space that has both TLS and photonic degrees of freedom.

#TLS liouvillian
ensemble = dicke(N = N, hamiltonian=h, emission=gE, dephasing=gD)
liouv = ensemble.liouvillian()

#photonic liouvilian
h_phot = wc * a.dag() * a
c_ops_phot = [np.sqrt(kappa) * a]
liouv_phot = liouvillian(h_phot, c_ops_phot)





We can then make a light-matter superoperator to address the total system of N spins and the photonic cavity by the super_tensor function in QuTiP. Similarly, the Liouvillian for the interaction Hamiltonian can be constructed with the spre and spost functions representing pre and post multiplication super-operators to finally construct the total Liouvillian of the combined light-matter system.

A similar treatment is possible for any operator and we construct the total \(J_z, J_+ J_-\) superoperators.

When only the dissipation of the cavity is present, beyond a critical value of the coupling \(g\), the steady state of the system becomes superradiant. This is visible by looking at the Wigner function of the photonic part of the density matrix, which displays two displaced lobes in the \(x\) and \(p\) plane.

rho_steady_state = steadystate(liouv_tot)
jz_steady_state = expect(jz_tot, rho_steady_state)
jpjm_steady_state = expect(jpjm_tot, rho_steady_state)

nphot_steady_state = expect(nphot_tot, rho_steady_state)
psi = rho_steady_state.ptrace(0)
xvec = np.linspace(-6, 6, 100)
W = wigner(psi, xvec, xvec)

wmap = wigner_cmap(W)  # Generate Wigner colormap
nrm = mpl.colors.Normalize(0, W.max())
plt.contourf(xvec, xvec, W, 100, cmap=wmap, norm=nrm)
plt.show()





As it has been shown in Ref. [1], the presence of dephasing suppresses the superradiant phase transition, while the presence of local emission restores it [2].


[image: ../_images/wigner.png]
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Spin squeezing

PIQS can be used to study spin squeezing and the effect of collective and local processes on a spin squeezing Hamiltonian such as:


\[H = -i\Lambda\left(J_{+}^2-J_{-}^2\right)\]

which evolves under the dynamics given by:


\[\dot{\rho} = -\frac{i}{\hbar} \lbrack H,\rho \rbrack +\frac{\gamma_\text{CE}}{2}\mathcal{L}_{J_{-}} + \frac{\gamma_\text{E}}{2}\sum_{n=1}^{N}\mathcal{L}_{J_{-,n}}[\rho].\]

In [1] it has been shown that the collective emmission (\(\gamma_\text{CE}\)) affects the spin squeezing in a system in a different way than the homogeneous local emission (\(\gamma_\text{E}\)). In PIQS, we can study these effects easily by adding these rates to an ensemble constructed as a Dicke object.

from qutip import *
from piqs import *
import matplotlib.pyplot as plt

# general parameters
N = 20
nds = num_dicke_states(N)
[jx, jy, jz] = jspin(N)
jp, jm = jspin(N, "+"), jspin(N, "-")
jpjm = jp*jm

lam = 1
# spin hamiltonian
h = -1j*lam*(jp**2-jm**2)

gamma = 0.2

# Ensemble with collective emission only
ensemble_ce = Dicke(N=N, hamiltonian=h, collective_emission=gamma)

# Ensemble with local emission only
ensemble_le = Dicke(N=N, hamiltonian=h, emission=gamma)

# Build the Liouvillians for both ensembles
liouv_collective = ensemble_ce.liouvillian()
liouv_local = ensemble_le.liouvillian()





Once we have defined our ensembles and constructed their Liouvillians, we can plot the time evolution of the spin squeezing parameter given by \(\xi^2= \frac{N \langle\Delta J_y^2\rangle}{\langle J_z\rangle^2}\) starting from any initial state.

# set initial state for spins (Dicke basis)
rho0 = dicke(N, 10, 10)
t = np.linspace(0, 2.5, 1000)

result_collective = mesolve(liouv_collective, excited, t, [],
                 e_ops = [jz, jy, jy**2,jz**2, jx])
result_local = mesolve(liouv_local, excited, t, [],
                 e_ops = [jz, jy, jy**2,jz**2, jx])

# Get the expectation values
jzt_c, jyt_c, jy2t_c, jz2t_c, jxt_c = result_collective.expect
jzt_l, jyt_l, jy2t_l, jz2t_l, jxt_l = result_local.expect

del_jy_c = jy2t_c - jyt_c**2
del_jy_l = jy2t_l - jyt_l**2

xi2_c = N * del_jy_c/(jzt_c**2 + jxt_c**2)
xi2_l = N * del_jy_l/(jzt_l**2 + jxt_l**2)

# Generate the plots
plt.plot(t*N*lam, xi2_c, 'k-', label="Collective emission")
plt.plot(t*N*lam, xi2_l, 'r--', label="Local_emission")
plt.plot(t*N*lam, 1+0*t, '--k')
plt.ylabel(r'$\xi^2$')
plt.xlabel(r'$ N \Lambda t$')
plt.legend()

plt.xlim([0, 2])
plt.ylim([0, 2])
plt.show()
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Documentation


Dicke module¶

Permutational Invariant Quantum Solver (PIQS)

This module calculates the Liouvillian for the dynamics of ensembles of
identical two-level systems (TLS) in the presence of local and collective
processes by exploiting permutational symmetry and using the Dicke basis.


	
class piqs.dicke.Dicke(N, hamiltonian=None, emission=0.0, dephasing=0.0, pumping=0.0, collective_emission=0.0, collective_dephasing=0.0, collective_pumping=0.0)[source]¶

	The Dicke class which builds the Lindbladian and Liouvillian matrix.

Example

>>> from piqs import Dicke, jspin
>>> N = 2
>>> jx, jy, jz = jspin(N)
>>> jp = jspin(N, "+")
>>> jm = jspin(N, "-")
>>> ensemble = Dicke(N, emission=1.)
>>> L = ensemble.liouvillian()









	Parameters:	
	N (int) -- The number of two-level systems.

	hamiltonian -- A Hamiltonian in the Dicke basis.

The matrix dimensions are (nds, nds),
with nds being the number of Dicke states.
The Hamiltonian can be built with the operators
given by the jspin functions.



	emission (float) -- Incoherent emission coefficient (also nonradiative emission).
default: 0.0

	dephasing (float) -- Local dephasing coefficient.
default: 0.0

	pumping (float) -- Incoherent pumping coefficient.
default: 0.0

	collective_emission (float) -- Collective (superradiant) emmission coefficient.
default: 0.0

	collective_pumping (float) -- Collective pumping coefficient.
default: 0.0

	collective_dephasing (float) -- Collective dephasing coefficient.
default: 0.0










	
N¶

	int -- The number of two-level systems.






	
hamiltonian¶

	:class: qutip.Qobj -- A Hamiltonian in the Dicke basis.

The matrix dimensions are (nds, nds),
with nds being the number of Dicke states.
The Hamiltonian can be built with the operators given
by the jspin function in the "dicke" basis.






	
emission¶

	float -- Incoherent emission coefficient (also nonradiative emission).
default: 0.0






	
dephasing¶

	float -- Local dephasing coefficient.
default: 0.0






	
pumping¶

	float -- Incoherent pumping coefficient.
default: 0.0






	
collective_emission¶

	float -- Collective (superradiant) emmission coefficient.
default: 0.0






	
collective_dephasing¶

	float -- Collective dephasing coefficient.
default: 0.0






	
collective_pumping¶

	float -- Collective pumping coefficient.
default: 0.0






	
nds¶

	int -- The number of Dicke states.






	
dshape¶

	tuple -- The shape of the Hilbert space in the Dicke or uncoupled basis.
default: (nds, nds).






	
__repr__()[source]¶

	Print the current parameters of the system.






	
c_ops()[source]¶

	Build collapse operators in the full Hilbert space 2^N.





	Returns:	c_ops_list -- The list with the collapse operators in the 2^N Hilbert space.


	Return type:	list










	
coefficient_matrix()[source]¶

	Build coefficient matrix for ODE for a diagonal problem.





	Returns:	M -- The matrix M of the coefficients for the ODE dp/dt = M p.
p is the vector of the diagonal matrix elements
of the density matrix rho in the Dicke basis.


	Return type:	ndarray










	
lindbladian()[source]¶

	Build the Lindbladian superoperator of the dissipative dynamics.





	Returns:	lindbladian -- The Lindbladian matrix as a qutip.Qobj.


	Return type:	



	class:	qutip.Qobj
















	
liouvillian()[source]¶

	Build the total Liouvillian using the Dicke basis.





	Returns:	liouv -- The Liouvillian matrix for the system.


	Return type:	



	class:	qutip.Qobj
















	
pisolve(initial_state, tlist, options=None)[source]¶

	Solve for diagonal Hamiltonians and initial states faster.





	Parameters:	
	initial_state -- An initial state specified as a density matrix of qutip.Qbj type

	tlist (ndarray) -- A 1D numpy array of list of timesteps to integrate

	options -- The options for the solver.






	Returns:	result -- A dictionary of the type qutip.solver.Result which holds the
results of the evolution.




	Return type:	list












	
prune_eigenstates(liouvillian)[source]¶

	Remove spurious eigenvalues and eigenvectors of the Liouvillian.

Spurious means that the given eigenvector has elements outside of the
block-diagonal matrix.





	Parameters:	liouvillian_eigenstates (list) -- A list with the eigenvalues and eigenvectors of the Liouvillian
including spurious ones.


	Returns:	correct_eigenstates -- The list with the correct eigenvalues and eigenvectors of the
Liouvillian.


	Return type:	list














	
class piqs.dicke.Pim(N, emission=0.0, dephasing=0, pumping=0, collective_emission=0, collective_pumping=0, collective_dephasing=0)[source]¶

	The Permutation Invariant Matrix class.

Initialize the class with the parameters for generating a Permutation
Invariant matrix which evolves a given diagonal initial state p as:


dp/dt = Mp






	Parameters:	
	N (int) -- The number of two-level systems.

	emission (float) -- Incoherent emission coefficient (also nonradiative emission).
default: 0.0

	dephasing (float) -- Local dephasing coefficient.
default: 0.0

	pumping (float) -- Incoherent pumping coefficient.
default: 0.0

	collective_emission (float) -- Collective (superradiant) emmission coefficient.
default: 0.0

	collective_pumping (float) -- Collective pumping coefficient.
default: 0.0

	collective_dephasing (float) -- Collective dephasing coefficient.
default: 0.0










	
N¶

	int -- The number of two-level systems.






	
emission¶

	float -- Incoherent emission coefficient (also nonradiative emission).
default: 0.0






	
dephasing¶

	float -- Local dephasing coefficient.
default: 0.0






	
pumping¶

	float -- Incoherent pumping coefficient.
default: 0.0






	
collective_emission¶

	float -- Collective (superradiant) emmission coefficient.
default: 0.0






	
collective_dephasing¶

	float -- Collective dephasing coefficient.
default: 0.0






	
collective_pumping¶

	float -- Collective pumping coefficient.
default: 0.0






	
M¶

	dict -- A nested dictionary of the structure {row: {col: val}} which holds
non zero elements of the matrix M






	
calculate_j_m(dicke_row, dicke_col)[source]¶

	Get the value of j and m for the particular Dicke space element.





	Parameters:	dicke_col (dicke_row,) -- The row and column from the Dicke space matrix


	Returns:	j, m -- The j and m values.


	Return type:	float










	
calculate_k(dicke_row, dicke_col)[source]¶

	Get k value from the current row and column element in the Dicke space.





	Parameters:	dicke_col (dicke_row,) -- The row and column from the Dicke space matrix


	Returns:	k -- The row index for the matrix M for given Dicke space
element


	Return type:	int










	
coefficient_matrix()[source]¶

	Generate the matrix M governing the dynamics.

If the initial density matrix and the Hamiltonian is diagonal, the
evolution of the system is given by the simple ODE: dp/dt = Mp.






	
isdicke(dicke_row, dicke_col)[source]¶

	Check if an element in a matrix is a valid element in the Dicke space.
Dicke row: j value index. Dicke column: m value index.
The function returns True if the element exists in the Dicke space and
False otherwise.





	Parameters:	dicke_col (dicke_row,) -- Index of the element in Dicke space which needs to be checked










	
solve(rho0, tlist, options=None)[source]¶

	Solve the ODE for the evolution of diagonal states and Hamiltonians.






	
tau1(j, m)[source]¶

	Calculate tau1 for value of j and m.






	
tau2(j, m)[source]¶

	Calculate tau2 for given j and m






	
tau3(j, m)[source]¶

	Calculate tau3.






	
tau4(j, m)[source]¶

	Calculate tau4.






	
tau5(j, m)[source]¶

	Calculate tau5.






	
tau6(j, m)[source]¶

	Calculate tau6.






	
tau7(j, m)[source]¶

	Calculate tau7.






	
tau8(j, m)[source]¶

	Calculate tau8.






	
tau9(j, m)[source]¶

	Calculate tau9.






	
tau_valid(dicke_row, dicke_col)[source]¶

	Find the Tau functions which are valid for this value of (dicke_row,
dicke_col) given the number of TLS. This calculates the valid tau
values and reurns a dictionary specifying the tau function name and
the value.





	Parameters:	dicke_col (dicke_row,) -- Index of the element in Dicke space which needs to be checked.


	Returns:	taus -- A dictionary of key, val as {tau: value} consisting of the valid
taus for this row and column of the Dicke space element.


	Return type:	dict














	
piqs.dicke.am(j, m)[source]¶

	Calculate the operator am used later.

The action of ap is given by: J_{-}|j, m> = A_{-}(jm)|j, m-1>





	Parameters:	m (j,) -- The value for j and m in the dicke basis |j, m>.


	Returns:	a_minus -- The value of a_minus.


	Return type:	float










	
piqs.dicke.ap(j, m)[source]¶

	Calculate the operator ap used later.

The action of ap is given by: J_{+}|j, m> = A_{+}(jm)|j, m+1>





	Parameters:	m (j,) -- The value for j and m in the dicke basis |j,m>.


	Returns:	a_plus -- The value of a_plus.


	Return type:	float










	
piqs.dicke.block_matrix(N)[source]¶

	Construct the block-diagonal matrix for the Dicke basis.





	Parameters:	N (int) -- Number of two-level systems.


	Returns:	block_matr -- A 2D block-diagonal matrix of ones with dimension (nds,nds),
where nds is the number of Dicke states for N two-level
systems.


	Return type:	ndarray










	
piqs.dicke.collapse_uncoupled(N, emission=0.0, dephasing=0.0, pumping=0.0, collective_emission=0.0, collective_dephasing=0.0, collective_pumping=0.0)[source]¶

	Create the collapse operators (c_ops) of the Lindbladian in the uncoupled basis.

These operators are in the uncoupled basis of the two-level system
(TLS) SU(2) Pauli matrices.

Notes

The collapse operator list can be given to qutip.mesolve.
Notice that the operators are placed in a Hilbert space of dimension 2^N.
Thus the method is suitable only for small N (of the order of 10).





	Parameters:	
	N (int) -- The number of two-level systems.

	emission (float) -- Incoherent emission coefficient (also nonradiative emission).
default: 0.0

	dephasing (float) -- Local dephasing coefficient.
default: 0.0

	pumping (float) -- Incoherent pumping coefficient.
default: 0.0

	collective_emission (float) -- Collective (superradiant) emmission coefficient.
default: 0.0

	collective_pumping (float) -- Collective pumping coefficient.
default: 0.0

	collective_dephasing (float) -- Collective dephasing coefficient.
default: 0.0






	Returns:	c_ops -- The list of collapse operators as qutip.Qobj for the system.




	Return type:	list












	
piqs.dicke.css(N, x=0.70710678118654746, y=0.70710678118654746, basis='dicke', coordinates='cartesian')[source]¶

	Generate the density matrix of the Coherent Spin State (CSS).

It can be defined as |CSS>= Prod_i^N(a|1>_i + b|0>_i)
with a = sin(theta/2), b = exp(1j*phi) * cos(theta/2).
The default basis is that of Dicke space |j, m> < j, m'|.
The default state is the symmetric CSS, |CSS> = |+>.





	Parameters:	
	N (int) -- The number of two-level systems.

	y (x,) -- The coefficients of the CSS state.

	basis (str) -- The basis to use. Either "dicke" or "uncoupled".

	coordinates (str) -- Either "cartesian" or "polar". If polar then the coefficients
are constructed as sin(x/2), cos(x/2)e^(iy).






	Returns:	rho -- The CSS state density matrix.




	Return type:	



	class:	qutip.Qobj


















	
piqs.dicke.dicke(N, j, m)[source]¶

	Generate a Dicke state as a pure density matrix in the Dicke basis.

For instance, if the superradiant state is given |j, m> = |1, 0> for N = 2,
the state is represented as a density matrix of size (nds, nds) or (4, 4),

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0





	Parameters:	
	N (int) -- The number of two-level systems.

	j (float) -- The eigenvalue j of the Dicke state |j, m>.

	m (float) -- The eigenvalue m of the Dicke state |j, m>.






	Returns:	rho -- The density matrix.




	Return type:	



	class:	qutip.Qobj


















	
piqs.dicke.dicke_basis(N, jmm1=None)[source]¶

	Initialize the density matrix of a Dicke state for several (j, m, m1).

This function can be used to build arbitrary states in the Dicke basis
|j, m><j, m1|. We create coefficients for each (j, m, m1) value in the
dictionary jmm1. For instance, if we start from the most excited state for
N = 2, we have the following state represented as a density matrix of size
(nds, nds) or
(4, 4).

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

The mapping for the (i, k) index of the density matrix to the |j, m>
values is given by the cythonized function jmm1_dictionary.





	Parameters:	
	N (int) -- The number of two-level systems.

	jmm1 (dict) -- A dictionary of {(j, m, m1): p} that gives a density p for the
(j, m, m1) matrix element.






	Returns:	rho -- The density matrix in the Dicke basis.




	Return type:	



	class:	qutip.Qobj


















	
piqs.dicke.energy_degeneracy(N, m)[source]¶

	Calculate the number of Dicke states with same energy.

The use of the Decimals class allows to explore N > 1000,
unlike the built-in function scipy.special.binom





	Parameters:	
	N (int) -- The number of two-level systems.

	m (float) -- Total spin z-axis projection eigenvalue.
This is proportional to the total energy.






	Returns:	degeneracy -- The energy degeneracy




	Return type:	int












	
piqs.dicke.excited(N, basis='dicke')[source]¶

	Generate the density matrix for the excited state.

This state is given by |N/2, N/2> in the default Dicke basis. If the
argument basis is "uncoupled" then it generates the state in a
2**N dim Hilbert space.





	Parameters:	
	N (int) -- The number of two-level systems.

	basis (str) -- The basis to use. Either "dicke" or "uncoupled".






	Returns:	state -- The excited state density matrix in the requested basis.




	Return type:	



	class:	qutip.Qobj


















	
piqs.dicke.ghz(N, basis='dicke')[source]¶

	Generate the density matrix of the GHZ state.

If the argument basis is "uncoupled" then it generates the state
in a 2**N dim Hilbert space.





	Parameters:	
	N (int) -- The number of two-level systems.

	basis (str) -- The basis to use. Either "dicke" or "uncoupled".






	Returns:	state -- The GHZ state density matrix in the requested basis.




	Return type:	



	class:	qutip.Qobj


















	
piqs.dicke.ground(N, basis='dicke')[source]¶

	Generate the density matrix of the ground state.

This state is given by |N/2, -N/2> in the Dicke basis. If the argument
basis is "uncoupled" then it generates the state in a 2**N dim Hilbert
space.





	Parameters:	
	N (int) -- The number of two-level systems.

	basis (str) -- The basis to use. Either "dicke" or "uncoupled"






	Returns:	state -- The ground state density matrix in the requested basis.




	Return type:	



	class:	qutip.Qobj


















	
piqs.dicke.identity_uncoupled(N)[source]¶

	Generate the identity in a 2**N dimensional Hilbert space.

The identity matrix is formed from the tensor product of N TLSs.





	Parameters:	N (int) -- The number of two-level systems.


	Returns:	identity -- The identity matrix.


	Return type:	



	class:	qutip.Qobj
















	
piqs.dicke.isdiagonal(mat)[source]¶

	Check if the input matrix is diagonal





	Parameters:	mat (ndarray/Qobj) -- A 2D numpy array


	Returns:	diag -- True/False depending on whether the input matrix is diagonal


	Return type:	bool










	
piqs.dicke.jspin(N, op=None, basis='dicke')[source]¶

	Calculate the list of collective operators of the total algebra.

The Dicke basis |j,m><j,m'| is used by default. Otherwise with "uncoupled"
the operators are in a 2^N space.





	Parameters:	
	N (int) -- Number of two-level systems.

	op (str) -- The operator to return 'x','y','z','+','-'.
If no operator given, then output is the list of operators
for ['x','y','z'].

	basis (str) -- The basis of the operators - "dicke" or "uncoupled"
default: "dicke".






	Returns:	j_alg -- A list of qutip.Qobj representing all the operators in
the "dicke" or "uncoupled" basis or a single operator requested.




	Return type:	list or :class: qutip.Qobj












	
piqs.dicke.m_degeneracy(N, m)[source]¶

	Calculate the number of Dicke states |j, m> with same energy.





	Parameters:	
	N (int) -- The number of two-level systems.

	m (float) -- Total spin z-axis projection eigenvalue (proportional to the total
energy).






	Returns:	degeneracy -- The m-degeneracy.




	Return type:	int












	
piqs.dicke.num_dicke_ladders(N)[source]¶

	Calculate the total number of ladders in the Dicke space.

For a collection of N two-level systems it counts how many different
"j" exist or the number of blocks in the block-diagonal matrix.





	Parameters:	N (int) -- The number of two-level systems.


	Returns:	Nj -- The number of Dicke ladders.


	Return type:	int










	
piqs.dicke.num_dicke_states(N)[source]¶

	Calculate the number of Dicke states.





	Parameters:	N (int) -- The number of two-level systems.


	Returns:	nds -- The number of Dicke states.


	Return type:	int










	
piqs.dicke.num_tls(nds)[source]¶

	Calculate the number of two-level systems.





	Parameters:	nds (int) -- The number of Dicke states.


	Returns:	N -- The number of two-level systems.


	Return type:	int










	
piqs.dicke.spin_algebra(N, op=None)[source]¶

	Create the list [sx, sy, sz] with the spin operators.

The operators are constructed for a collection of N two-level systems
(TLSs). Each element of the list, i.e., sx, is a vector of qutip.Qobj
objects (spin matrices), as it cointains the list of the SU(2) Pauli
matrices for the N TLSs. Each TLS operator sx[i], with i = 0, ..., (N-1),
is placed in a 2^N-dimensional Hilbert space.

Notes

sx[i] is sigmax()/2 in the composite Hilbert space.





	Parameters:	N (int) -- The number of two-level systems.


	Returns:	spin_operators -- A list of qutip.Qobj operators - [sx, sy, sz] or the
requested operator.


	Return type:	list or :class: qutip.Qobj










	
piqs.dicke.state_degeneracy(N, j)[source]¶

	Calculate the degeneracy of the Dicke state.

Each state |j, m> includes D(N,j) irreducible representations |j, m,alpha>
Uses Decimals to calculate higher numerator and denominators numbers.





	Parameters:	
	N (int) -- The number of two-level systems.

	j (float) -- Total spin eigenvalue (cooperativity).






	Returns:	degeneracy -- The state degeneracy.




	Return type:	int












	
piqs.dicke.superradiant(N, basis='dicke')[source]¶

	Generate the density matrix of the superradiant state.

This state is given by |N/2, 0> or |N/2, 0.5> in the Dicke basis.
If the argument basis is "uncoupled" then it generates the state
in a 2**N dim Hilbert space.





	Parameters:	
	N (int) -- The number of two-level systems.

	basis (str) -- The basis to use. Either "dicke" or "uncoupled".






	Returns:	state -- The superradiant state density matrix in the requested basis.




	Return type:	



	class:	qutip.Qobj


















	
piqs.dicke.tau_column(tau, k, j)[source]¶

	Determine the column index for the non-zero elements of the matrix for a
particular row k and the value of j from the Dicke space.





	Parameters:	
	tau (str) -- The tau function to check for this k and j.

	k (int) -- The row of the matrix M for which the non zero elements have
to be calculated.

	j (float) -- The value of j for this row.
















Cythonized Dicke module¶

Cythonized code for permutationally invariant Lindbladian generation


	
class piqs.cy.dicke.Dicke¶

	A faster Cythonized Dicke state class to build the Lindbladian.





	Parameters:	
	N (int) -- The number of two-level systems.

	emission (float) -- Incoherent emission coefficient (also nonradiative emission).
default: 0.0

	dephasing (float) -- Local dephasing coefficient.
default: 0.0

	pumping (float) -- Incoherent pumping coefficient.
default: 0.0

	collective_emission (float) -- Collective (superradiant) emmission coefficient.
default: 0.0

	collective_pumping (float) -- Collective pumping coefficient.
default: 0.0

	collective_dephasing (float) -- Collective dephasing coefficient.
default: 0.0










	
N¶

	int -- The number of two-level systems.






	
emission¶

	float -- Incoherent emission coefficient (also nonradiative emission).
default: 0.0






	
dephasing¶

	float -- Local dephasing coefficient.
default: 0.0






	
pumping¶

	float -- Incoherent pumping coefficient.
default: 0.0






	
collective_emission¶

	float -- Collective (superradiant) emmission coefficient.
default: 0.0






	
collective_pumping¶

	float -- Collective pumping coefficient.
default: 0.0






	
collective_dephasing¶

	float -- Collective dephasing coefficient.
default: 0.0






	
gamma1()¶

	Calculate gamma1 for value of j, m, m'.






	
gamma2()¶

	Calculate gamma2 for given j, m, m'.






	
gamma3()¶

	Calculate gamma3 for given j, m, m'.






	
gamma4()¶

	Calculate gamma4 for given j, m, m'.






	
gamma5()¶

	Calculate gamma5 for given j, m, m'.






	
gamma6()¶

	Calculate gamma6 for given j, m, m'.






	
gamma7()¶

	Calculate gamma7 for given j, m, m'.






	
gamma8()¶

	Calculate gamma8 for given j, m, m'.






	
gamma9()¶

	Calculate gamma9 for given j, m, m'.






	
lindbladian()¶

	Build the Lindbladian superoperator of the dissipative dynamics as a
sparse matrix.





	Returns:	lindblad_qobj -- The matrix size is (nds**2, nds**2) where nds is the number of
Dicke states.


	Return type:	



	class:	qutip.Qobj




















	
piqs.cy.dicke.get_blocks()¶

	Calculate the number of cumulative elements at each block boundary.





	Parameters:	N (int) -- The number of two-level systems.


	Returns:	blocks -- An array with the number of cumulative elements at the boundary of
each block.


	Return type:	np.ndarray










	
piqs.cy.dicke.get_index()¶

	Get the index in the density matrix for this j, m, m1 value.





	Parameters:	
	N (int) -- The number of two-level systems.

	m, m1 (j,) -- The j, m, m1 values.

	blocks (np.ndarray) -- An 1D array with the number of cumulative elements at the boundary of
each block.






	Returns:	mvals -- The m values for given j.




	Return type:	array












	
piqs.cy.dicke.j_min()¶

	Calculate the minimum value of j for given N.





	Parameters:	N (int) -- Number of two-level systems.


	Returns:	jmin -- The minimum value of j for odd or even number of two
level systems.


	Return type:	float










	
piqs.cy.dicke.j_vals()¶

	Get the valid values of j for given N.





	Parameters:	N (int) -- The number of two-level systems.


	Returns:	jvals -- The j values for given N as a 1D array.


	Return type:	np.ndarray










	
piqs.cy.dicke.jmm1_dictionary()¶

	Get the index in the density matrix for this j, m, m1 value.

The (j, m, m1) values are mapped to the (i, k) index of a block
diagonal matrix which has the structure to capture the permutationally
symmetric part of the density matrix. For each (j, m, m1) value, first
we get the block by using the "j" value and then the addition in the
row/column due to the m and m1 is determined. Four dictionaries are
returned giving a map from the (j, m, m1) values to (i, k), the inverse
map, a flattened map and the inverse of the flattened map.






	
piqs.cy.dicke.m_vals()¶

	Get all the possible values of m or m1 for given j.





	Parameters:	N (int) -- The number of two-level systems.


	Returns:	mvals -- The m values for given j as a 1D array.


	Return type:	np.ndarray
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Spin ensembles: Negative temperature

We consider a system of two two-level systems (TLSs) \(N_1\) and \(N_2\) with identical frequency \(\omega_0\) with collective pumping and collective emission at identical rates, \(\gamma_\text{CE} = (1+\bar{n})\gamma_0\) and \(\gamma_\text{CP}=\bar{n}\gamma_0\), respectively, with \(\bar{n}=\frac{1}{e^{\hbar\omega_0/k_\mathrm{B}T}-1}\) and


\[\dot{\rho} = -i\lbrack \omega_{0}\left(J_z^{(1)}+J_z^{(2)}\right),\rho \rbrack
+\frac{\gamma_\text {CE}}{2}\mathcal{L}_{J_{-}^{(1)}+ J_{-}^{(2)}}[\rho]
+\frac{\gamma_\text {CP}}{2}\mathcal{L}_{J_{+}^{(1)}+J_{+}^{(2)}}[\rho]\]

Hama et al. have shown in Ref. [1] that for \(N_1<N_2\), if the system is initialized in the state \(|{\psi_0}\rangle=|{\downarrow\cdots\downarrow}\rangle_1\otimes|{\uparrow\cdots\uparrow}\rangle_2\), the system relaxes to a steady state for which the first subsystem is excited, i.e. \(\langle J_z^{(1)}(\infty)\rangle>0\) and for some parameters  \(\frac{\langle J_z^{(1)}(\infty)\rangle}{(N_1/2)}\rightarrow 0.5\), also in the limit of zero temperature, \(T\rightarrow 0\).

Notice that \(\mathcal{L}_{J_{-}^{(1)}+ J_{-}^{(2)}}[\rho]\neq \mathcal{L}_{J_{-}^{(1)}}[\rho]+\mathcal{L}_{ J_{-}^{(2)}}[\rho]\), which is a case treated in Ref. [2] two obtain syncronized ensembles of atoms.

Here we explore what happens to the master equation of Eq. (1) one adds also collective and local terms relative to single ensembles,


\[ \begin{align}\begin{aligned}\dot{\rho} =
-i\lbrack \omega_{0}\left(J_z^{(1)}+J_z^{(2)}\right),\rho \rbrack
+\frac{\gamma_\text{CE}}{2}\mathcal{L}_{J_{-}^{(1)}+ J_{-}^{(2)}}[\rho]
+\frac{\gamma_\text{CP}}{2}\mathcal{L}_{J_{+}^{(1)}+J_{+}^{(2)}}[\rho]
+ \frac{\gamma_\text{CEi}}{2}\mathcal{L}_{J_{-}^{(1)}}[\rho]
+\frac{\gamma_\text{CEi}}{2}\mathcal{L}_{J_{-}^{(2)}}[\rho]\\+\sum_{n}^{N_1}\frac{\gamma_\text{E}}{2}\mathcal{L}_{J_{-,n}^{(1)}}[\rho]+\frac{\gamma_\text{D}}{2}\mathcal{L}_{J_{z,n}^{(1)}}[\rho]+\sum_{n}^{N_2}\frac{\gamma_\text{E}}{2}\mathcal{L}_{J_{-,n}^{(2)}}[\rho]+\frac{\gamma_\text{D}}{2}\mathcal{L}_{J_{z,n}^{(2)}}[\rho]\end{aligned}\end{align} \]

where \(\gamma_\text {CEi}\) is the rate of superradiant decay for the individual ensembles of TLSs, \(\gamma_\text{E}\) and \(\gamma_\text{D}\) are the rates of local emission and dephasing.

Firstly, we will show how the collective dynamics of Eq. (1) can be investigated in a simple way using QuTiP’s [3] \(\texttt{jmat}\) function, which defines collective spins for maximally symmetric states in a Hilbert space of dimension \(N_i+1\).

Secondly, we will exploit the permutational invariance of the local processes in Eq. (2) to investigate the exact dynamics using the Dicke basis, \(\rho = \sum_{j,m,m'}p_{j,m,m'}|j,m\rangle\langle j,m'|\) [4]. We will do so numerically using the PIQS library [5].

In the following we might use in plots thefollowing equivalent notation \(\gamma_\text {CE}=\gamma_\Downarrow\),
\(\gamma_\text {CP}=\gamma_\Uparrow\), \(\gamma_\text {E}=\gamma_\downarrow\), \(\gamma_\text {P}=\gamma_\uparrow\), and
\(\gamma_\text {D}=\gamma_\phi\).
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