
piqs Documentation
Release 1.1-dev

Nathan Shammah, Shahnawaz Ahmed

May 15, 2018

Contents:

1 Introduction 1
1.1 Permutational Invariant Quantum Solver (PIQS) . 1
1.2 Integrated with QuTiP . 1
1.3 A wide range of applications . 1

2 Installation 3

3 User Guide 5
3.1 Superradiant Light Emission . 6
3.2 Superradiance: Qubits in a cavity . 7
3.3 Spin squeezing . 9

4 Documentation 13

5 Developers 15

6 References 17

7 Indices and tables 19

i

ii

CHAPTER 1

Introduction

1.1 Permutational Invariant Quantum Solver (PIQS)

PIQS is an open-source Python solver to study the exact Lindbladian dynamics of open quantum systems consisting
of identical qubits.

In the case where local processes are included in the model of a system’s dynamics, numerical simulation requires
dealing with density matrices of size 2𝑁 . This becomes infeasible for a large number of qubits. We can simplify the
calculations by exploiting the permutational invariance of indistinguishable quantum particles which allows the user
to study hundreds of qubits.

1.2 Integrated with QuTiP

A major feature of PIQS is that it allows to build the Liouvillian of the system in an optimal way. It uses Cython
to optimize performance and by taking full advangtage of the sparsity of the matrix it can deal with large systems.
Since it is compatible with the quantum object class of [QuTiP] one can take full advantage of existing features of this
excellent open-source library.

1.3 A wide range of applications

• The time evolution of the total density matrix of quantum optics and cavity QED systems for permutationally
symmetric initial states (such as the GHZ state, Dicke states, coherent spin states).

• Quantum phase transitions (QPT) of driven-dissipative out-of-equilibrium quantum systems.

• Correlation functions of collective systems in quantum optics experiments, such as the spectral density and
second-order correlation functions.

• Various quantum optics phenomena such as steady-state superradiance, superradiant light emission, superradiant
phase transition, spin squeezing, boundary time crystals, resonance fluorescence.

1

piqs Documentation, Release 1.1-dev

2 Chapter 1. Introduction

CHAPTER 2

Installation

In the terminal enter the following commands (you just need git and python installed). If you do not have git
installed, just download the folder from Github and run the setup.py file with python. Please install cython,
numpy, scipy and qutip as piqs depends on these packages.

We will soon publish the code in the Python Packaging Index (pip) and also make a conda package for easy
installation on Windows. If you have any problems installing the tool, please open an issue or write to us.

git clone https://github.com/nathanshammah/piqs.git
cd piqs
python setup.py install

3

piqs Documentation, Release 1.1-dev

4 Chapter 2. Installation

CHAPTER 3

User Guide

The Permutational Invariant Quantum Solver (PIQS) is an open-source Python solver to study the exact Lindbladian
dynamics of open quantum systems consisting of identical qubits. It is integrated in QuTiP and can be imported as as
a model.

Using this library, the Liouvillian of an ensemble of 𝑁 qubits, or two-level systems (TLSs), 𝒟𝑇𝐿𝑆(𝜌), can be built
using only polynomial – instead of exponential – resources. This has many applications for the study of realistic
quantum optics models of many TLSs and in general as a tool in cavity QED [1].

Consider a system evolving according to the equation

𝜌̇ = 𝒟TLS(𝜌) = − 𝑖

~
[𝐻, 𝜌] +

𝛾CE

2
ℒ𝐽− [𝜌] +

𝛾CD

2
ℒ𝐽𝑧

[𝜌] +
𝛾CP

2
ℒ𝐽+

[𝜌]

+

𝑁∑︁
𝑛=1

(︁𝛾E

2
ℒ𝐽−,𝑛

[𝜌] +
𝛾D

2
ℒ𝐽𝑧,𝑛

[𝜌] +
𝛾P

2
ℒ𝐽+,𝑛

[𝜌]
)︁

where 𝐽𝛼,𝑛 = 1
2𝜎𝛼,𝑛 are SU(2) Pauli spin operators, with 𝛼 = 𝑥, 𝑦, 𝑧 and 𝐽±,𝑛 = 𝜎±,𝑛. The collective spin operators

are 𝐽𝛼 =
∑︀

𝑛 𝐽𝛼,𝑛 . The Lindblad super-operators are ℒ𝐴 = 2𝐴𝜌𝐴† −𝐴†𝐴𝜌− 𝜌𝐴†𝐴.

The inclusion of local processes in the dynamics lead to using a Liouvillian space of dimension 4𝑁 . By exploiting the
permutational invariance of identical particles [2-8], the Liouvillian 𝒟TLS(𝜌) can be built as a block-diagonal matrix
in the basis of Dicke states |𝑗,𝑚⟩.

The system under study is defined by creating an object of the Dicke class, e.g. simply named system, whose first
attribute is

• system.N, the number of TLSs of the system 𝑁 .

The rates for collective and local processes are simply defined as

• collective_emission defines 𝛾CE, collective (superradiant) emission

• collective_dephasing defines 𝛾CD, collective dephasing

• collective_pumping defines 𝛾CP, collective pumping.

• emission defines 𝛾E, incoherent emission (losses)

• dephasing defines 𝛾D, local dephasing

5

piqs Documentation, Release 1.1-dev

• pumping defines 𝛾P, incoherent pumping.

Then the system.lindbladian() creates the total TLS Linbladian superoperator matrix. Similarly, system.
hamiltonian defines the TLS hamiltonian of the system 𝐻TLS.

The system’s Liouvillian can be built using system.liouvillian(). The properties of a Piqs object can be
visualized by simply calling system. We give two basic examples on the use of PIQS. In the first example the
incoherent emission of N driven TLSs is considered.

from piqs import Dicke
from qutip import steadystate
N = 10
system = Dicke(N, emission = 1, pumping = 2)
L = system.liouvillian()
steady = steadystate(L)

3.1 Superradiant Light Emission

We consider a system of 𝑁 two-level systems (TLSs) with identical frequency 𝜔0, which can emit collectively at a
rate 𝛾CE, and suffer from dephasing and local losses at rates 𝛾D and 𝛾E, respectively. The dynamics can be written as

𝜌̇ = −𝑖[𝜔0𝐽𝑧, 𝜌] +
𝛾CE

2
ℒ𝐽− [𝜌] +

𝑁∑︁
𝑛=1

𝛾D

2
ℒ𝐽𝑧,𝑛

[𝜌] +
𝛾E

2
ℒ𝐽−,𝑛

[𝜌].

When 𝛾E = 𝛾D = 0 this dynamics is the classical superradiant master equation. In this limit, a system initially
prepared in the fully-excited state undergoes superradiant light emission whose peak intensity scales proportionally to
𝑁2.

from qutip import *
from piqs import *
import matplotlib.pyplot as plt

N = 20
[jx, jy, jz] = jspin(N)
jp = jspin(N, "+")
jm = jp.dag()

spin hamiltonian
w0 = 1
H = w0 * jz

dissipation
gCE, gD, gE = 1, 1, 0

set initial conditions for spins
system = Dicke(N=N, hamiltonian=h, dephasing=gD,

collective_emission=gCE)

build the Liouvillian matrix
liouv = system.liouvillian()

Now that the system Liouvillian is defined, we can use QuTiP to solve the dynamics. We use as integration time a mul-
tiple of the superradiant delay time, 𝑡D = log(𝑁)/(𝑁𝛾CE). We specify the operators for which the expectation values
should be calculated to mesolve with the keyword argument e_ops. In this case, we are interested in 𝐽𝑥, 𝐽+𝐽−, 𝐽

2
𝑧 .

6 Chapter 3. User Guide

piqs Documentation, Release 1.1-dev

nt = 1001
td0 = np.log(N)/(N*gCE)
tmax = 10 * td0

t = np.linspace(0, tmax, nt)

initial state
excited_rho = excited(N)

alternative states
superradiant_rho = dicke(N, N/2, 0)
subradiant_rho = dicke(N, 0, 0)
css_symmetric = css(N)

a = 1/np.sqrt(2)
css_antisymmetric = css(N, a, -a)
ghz_rho = ghz(N)
rho0 = excited_rho
result = mesolve(liouv, rho0, t, [], e_ops = [jz, jp*jm, jz**2],

options = Options(store_states=True))
rhot = result.states

We can then plot the results of the time evolution of the expectation values of the collective spin operators for different
initial states.

jz_t = result.expect[0]
jpjm_t = result.expect[1]
jz2_t = result.expect[2]

jmax = (0.5 * N)
fig1 = plt.figure()
plt.plot(t/td0, jz_t/jmax)
plt.show()
plt.close()

References:

3.2 Superradiance: Qubits in a cavity

We consider a system of 𝑁 two-level systems (TLSs) coupled to a cavity mode. This is known as the Dicke model

𝐻 = 𝜔0𝐽𝑧 + 𝜔𝑐𝑎
†𝑎 + 𝑔

(︀
𝑎† + 𝑎

)︀
(𝐽+ + 𝐽−)

where each TLS has identical frequency 𝜔0. The light matter coupling can be in the ultrastrong coupling (USC)
regime, 𝑔/𝜔0 > 0.1.

If we study this model as an open quantum system, the cavity can leak photons and the TLSs are subject to local
processes. For example the system can be incoherently pumped at a rate 𝛾P, the TLSs are subject to dephaisng at a rate
𝛾D, and local incoherent emission occurs at a rate 𝛾E. The dynamics of the coupled light-matter system is governed by

𝜌̇ = −𝑖[𝜔0𝐽𝑧 + 𝜔𝑎𝑎
†𝑎 + 𝑔

(︀
𝑎† + 𝑎

)︀
(𝐽+ + 𝐽−) , 𝜌]

+
𝜅

2
ℒ𝑎[𝜌] +

𝑁∑︁
𝑛=1

(︁𝛾P

2
ℒ𝐽+,𝑛 [𝜌] +

𝛾E

2
ℒ𝐽+,𝑛 [𝜌] +

𝛾D

2
ℒ𝐽+,𝑛 [𝜌]

)︁
(1)

3.2. Superradiance: Qubits in a cavity 7

piqs Documentation, Release 1.1-dev

import matplotlib.pyplot as plt
from qutip import *
from piqs import *

#TLS parameters
N = 6
nds = num_dicke_states(N)
[jx, jy, jz] = jspin(N)
jp, jm = jspin(N, "+"), jspin(N, "-")
w0 = 1
gE, gD = 0.1, 0.01

Hamiltonian
h = w0 * jz

#photonic parameters
nphot = 20
wc = 1
kappa = 1
ratio_g = 2
g = ratio_g/np.sqrt(N)
a = destroy(nphot)

After defining all the parameters, we can build a Liouvillian for the TLS ensemble and the photonic cavity. In order
to study this system using QuTiP and 𝑃𝐼𝑄𝑆, we will first build the TLS Liouvillian, then we will build the photonic
Liouvillian and finally we will build the light-matter interaction. The total dynamics of the system is thus defined in a
Liouvillian space that has both TLS and photonic degrees of freedom.

#TLS liouvillian

(continues on next page)

8 Chapter 3. User Guide

piqs Documentation, Release 1.1-dev

(continued from previous page)

ensemble = dicke(N = N, hamiltonian=h, emission=gE, dephasing=gD)
liouv = ensemble.liouvillian()

#photonic liouvilian
h_phot = wc * a.dag() * a
c_ops_phot = [np.sqrt(kappa) * a]
liouv_phot = liouvillian(h_phot, c_ops_phot)

We can then make a light-matter superoperator to address the total system of N spins and the photonic cavity by the
super_tensor function in QuTiP. Similarly, the Liouvillian for the interaction Hamiltonian can be constructed with
the spre and spost functions representing pre and post multiplication super-operators to finally construct the total
Liouvillian of the combined light-matter system.

A similar treatment is possible for any operator and we construct the total 𝐽𝑧, 𝐽+𝐽− superoperators.

When only the dissipation of the cavity is present, beyond a critical value of the coupling 𝑔, the steady state of the
system becomes superradiant. This is visible by looking at the Wigner function of the photonic part of the density
matrix, which displays two displaced lobes in the 𝑥 and 𝑝 plane.

rho_steady_state = steadystate(liouv_tot)
jz_steady_state = expect(jz_tot, rho_steady_state)
jpjm_steady_state = expect(jpjm_tot, rho_steady_state)

nphot_steady_state = expect(nphot_tot, rho_steady_state)
psi = rho_steady_state.ptrace(0)
xvec = np.linspace(-6, 6, 100)
W = wigner(psi, xvec, xvec)

wmap = wigner_cmap(W) # Generate Wigner colormap
nrm = mpl.colors.Normalize(0, W.max())
plt.contourf(xvec, xvec, W, 100, cmap=wmap, norm=nrm)
plt.show()

As it has been shown in Ref. [1], the presence of dephasing suppresses the superradiant phase transition, while the
presence of local emission restores it [2].

References:

3.3 Spin squeezing

PIQS can be used to study spin squeezing and the effect of collective and local processes on a spin squeezing Hamil-
tonian such as:

𝐻 = −𝑖Λ
(︀
𝐽2
+ − 𝐽2

−
)︀

which evolves under the dynamics given by:

𝜌̇ = − 𝑖

~
[𝐻, 𝜌] +

𝛾CE

2
ℒ𝐽− +

𝛾E

2

𝑁∑︁
𝑛=1

ℒ𝐽−,𝑛 [𝜌].

In [1] it has been shown that the collective emmission (𝛾CE) affects the spin squeezing in a system in a different way
than the homogeneous local emission (𝛾E). In PIQS, we can study these effects easily by adding these rates to an
ensemble constructed as a Dicke object.

3.3. Spin squeezing 9

piqs Documentation, Release 1.1-dev

from qutip import *
from piqs import *
import matplotlib.pyplot as plt

general parameters
N = 20
nds = num_dicke_states(N)
[jx, jy, jz] = jspin(N)
jp, jm = jspin(N, "+"), jspin(N, "-")
jpjm = jp*jm

lam = 1
spin hamiltonian
h = -1j*lam*(jp**2-jm**2)

gamma = 0.2

Ensemble with collective emission only
ensemble_ce = Dicke(N=N, hamiltonian=h, collective_emission=gamma)

Ensemble with local emission only
ensemble_le = Dicke(N=N, hamiltonian=h, emission=gamma)

Build the Liouvillians for both ensembles
liouv_collective = ensemble_ce.liouvillian()
liouv_local = ensemble_le.liouvillian()

Once we have defined our ensembles and constructed their Liouvillians, we can plot the time evolution of the spin

squeezing parameter given by 𝜉2 =
𝑁⟨Δ𝐽2

𝑦⟩
⟨𝐽𝑧⟩2 starting from any initial state.

set initial state for spins (Dicke basis)
rho0 = dicke(N, 10, 10)

(continues on next page)

10 Chapter 3. User Guide

piqs Documentation, Release 1.1-dev

(continued from previous page)

t = np.linspace(0, 2.5, 1000)

result_collective = mesolve(liouv_collective, excited, t, [],
e_ops = [jz, jy, jy**2,jz**2, jx])

result_local = mesolve(liouv_local, excited, t, [],
e_ops = [jz, jy, jy**2,jz**2, jx])

Get the expectation values
jzt_c, jyt_c, jy2t_c, jz2t_c, jxt_c = result_collective.expect
jzt_l, jyt_l, jy2t_l, jz2t_l, jxt_l = result_local.expect

del_jy_c = jy2t_c - jyt_c**2
del_jy_l = jy2t_l - jyt_l**2

xi2_c = N * del_jy_c/(jzt_c**2 + jxt_c**2)
xi2_l = N * del_jy_l/(jzt_l**2 + jxt_l**2)

Generate the plots
plt.plot(t*N*lam, xi2_c, 'k-', label="Collective emission")
plt.plot(t*N*lam, xi2_l, 'r--', label="Local_emission")
plt.plot(t*N*lam, 1+0*t, '--k')
plt.ylabel(r'ξ^2')
plt.xlabel(r'$ N \Lambda t$')
plt.legend()

plt.xlim([0, 2])
plt.ylim([0, 2])
plt.show()

References:

3.3. Spin squeezing 11

piqs Documentation, Release 1.1-dev

Table 1: PIQS functions
Operators Command Description
Collective spin Jx jspin(N,

"x")
The collective spin operator Jx. Requires N number of TLS

Collective spin J+ jspin(N,
"+")

The collective spin operator J+.

Collective spin J- jspin(N,
"-")

The collective spin operator Jz.

Collective spin Jx in uncou-
pled basis

jspin(N,
"z",
basis='uncoupled')

The collective spin operator Jz in the uncoupled basis

Dicke state |j, m> dicke(N, j,
m)

A Dicke state given by |j, m>

Excited state in uncoupled
basis

excited(N,
basis="uncoupled")

The excited state in the uncoupled basis

GHZ state in the Dicke basis ghz(N) The GHZ state in the Dicke (default) basis for N number of
TLS

Collapse operators of the en-
semble

Dicke.
c_ops()

The collapse operators for the ensemble can be called by the
c_ops method of the dicke class.

12 Chapter 3. User Guide

CHAPTER 4

Documentation

13

piqs Documentation, Release 1.1-dev

14 Chapter 4. Documentation

CHAPTER 5

Developers

• Nathan Shammah nathan.shammah@gmail.com

• Shahnawaz Ahmed shahnawaz.ahmed95@gmail.com

15

piqs Documentation, Release 1.1-dev

16 Chapter 5. Developers

CHAPTER 6

References

The code and an introductory notebook can be found in Ref. [1]. A paper detailing the theoretical aspects and
illustrating many applications is in Ref. [2]. Related open-source libraries for open quantum dynamics that exploit
permutational invariance are Permutations [3] by Peter Kirton and PsiQuaSP by Michael Gegg [4].

[1] https://github.com/nathanshammah/notebooks

[2] N. Shammah, S. Ahmed, N. Lambert, S. De Liberato, and F. Nori, to be submitted

[3] https://github.com/peterkirton/permutations P. Kirton and J. Keeling Phys. Rev. Lett. 118, 123602 (2017)

[4] https://github.com/modmido/psiquasp M. Gegg and M. Richter, Sci. Rep. 7, 16304 (2017)

17

piqs Documentation, Release 1.1-dev

18 Chapter 6. References

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

19

	Introduction
	Permutational Invariant Quantum Solver (PIQS)
	Integrated with QuTiP
	A wide range of applications

	Installation
	User Guide
	Superradiant Light Emission
	Superradiance: Qubits in a cavity
	Spin squeezing

	Documentation
	Developers
	References
	Indices and tables

